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Abstract

We simulate boundary plasma turbulence using a 3D turbulence code BOUT and a linearized electromagnetic in-

stability shooting code BAL. The code BOUT solves ¯uid equations for plasma vorticity, density, ion temperature and

parallel momentum (along the magnetic ®eld), electron temperature, and parallel momentum. A realistic DIII-D X-

point magnetic geometry is used. The focus is on the possible local linear instability drives and turbulence suppression

mechanisms involved in the L±H transition and on the consistency of the computed turbulence with observed tem-

perature and density pro®les. Comparison is made with data from the DIII-D tokamak where probe measurements

provide turbulence statistics in the boundary plasma and transport modeling. Ó 1999 Elsevier Science B.V. All rights

reserved.
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1. Introduction

Turbulence in the plasma boundary of tokamaks is of

concern due to its importance in governing the ability to

achieve enhanced con®nement modes in the core as well

as transport (and thus divertor heat loads) in the scrape-

o� layer (SOL) plasma. Speci®cally, the boundary tur-

bulence determines how the E � B shear layer is gener-

ated and how the transport barrier is formed. The

unstable normal modes in the plasma boundary region

have a di�erent character than in the core due to low

temperature, steep gradients of plasma pro®les, and the

X-point divertor geometry.

In an e�ort to better understand the turbulence dy-

namics, we simulate the boundary plasma for the DIII-D

tokamak using the 3D global turbulence code BOUT [1]

and a linearized electromagnetic instability shooting

code BAL [2]. Our primary focus here is on the possible

local linear instability drives, turbulence saturation levels

and comparison of power spectra with probe measure-

ments. In Section 2, we give our reduced set of dynam-

ical equations in our simulation, and the simulation

model is described in Section 3. Section 4 contains a

comparison between the experiment and the simulation

including discussion of the importance of assumptions

in the model, and we give a summary in Section 5.

2. Dynamic equations

In the boundary plasma, the application of a ¯uid

model is reasonable in part because of the low temper-

ature and high collisionality. Further, the dominant

modes in our simulations are in the long wavelength

regimes, k?qs � 1 at separatrix, consistent with a ¯uid

approach. Thus an appropriate set of equations to des-

cribe the turbulence is given by a six-®eld model ob-

tained by reduction of the Braginskii Equations [3]:
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where U � cb0 �r?/=B, Ek � ÿrk/ÿ �1=c�oAk=
ot;r? � �b0 � �vE�B � vPi�B=c� � ÿ-;r2

?Ak � ÿ�4p=c�jk;
rk � r0

k � ~b � r; ~b � ~B=B;r0
k � b0 � r; j � b0 � rb0: mii;

lk, vc
k are the classical di�usion coe�cients, and mei is

electron collision frequency. Except for the ion temper-

ature equation and parallel electron viscous damping,

the equations were described in Ref. [1]. The parallel

electron viscous damping is necessary to smooth the

high kk oscillations near the X-point region. The ion

temperature equation appears to be important for the

turbulence-generated electric ®elds via the ion diamag-

netic drift and possibly introduces the gi-mode in the

inner edge region.

3. Numerical model

In order to e�ciently simulate turbulence with short

perpendicular wavelength kk � k? we choose ®eld-line-

aligned ballooning coordinates, x, y and z, which are

related to the usual ¯ux coordinates w, h, and u by the

relation x � wÿ ws; y � h; z � uÿ R q�x; y� dy. The

partial derivatives are: d=dw � o=oxÿ �R oq=ow�o=oz;
d=dh � o=oy ÿ qo=oz; d=du � o=oz, and rk �
�Bp=hB�o=oy. The magnetic separatrix is denoted by

w � ws. Here the key ballooning assumption is jo=oyj �
jqo=ozj and d=dh ' ÿqo=oz. In this choice of coordi-

nates, y, the poloidal angle, is also the coordinate along

the ®eld line. The radial-poloidal plane is given in Fig. 1.

The mesh in this plane uses as one coordinate the po-

loidal magnetic ¯ux surfaces as constructed by the EFIT

code. With poloidal ¯ux, w, normalized to unity on the

separatrix, we typically take the inner simulation

boundary condition to be wc � 0:95 and the outer

boundary at ww � 1:05. The boundary conditions is

homogeneous Neumann at x � xc and Dirichlet at

x � xw, sheath boundaries in y in the SOL and the pri-

vate ¯ux regions, periodic in y in ``edge'' (inside of

separatrix), and periodic in z.

The BOUT code solves for the plasma ¯uid equations

in a 3-D toroidal segment, including the region some-

what inside the separatrix and extending into the SOL.

A ®nite di�erence method is used, and the resulting

di�erence equations are solved with a fully implicit

Newton±Krylov solver CVODE/PVODE [4,5].

4. Simulation of the boundary turbulence and comparison

with the experiment

Our ®rst application of BOUT is to study pedestal

physics and the L±H transition. We focus on the analysis

of discharge 89840 of DIII-D in the boundary plasma.

This discharge was selected because it is one of a series

taken to document the behavior of the plasma during a

slow L- to H-mode transition. There are mid-plane re-

ciprocating probe measurements for the L- and H-mode

Fig. 1. 2D Plan showing the regions used in 3D simulation code

BOUT.
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plasma on this discharge [6]. In order to investigate

pedestal physics, we ®rst run the edge plasma transport

code UEDGE/EFIT to get the magnetic geometry for

this discharge in L and H mode. We then obtain equi-

librium plasma pro®les by using hyperbolic tangent ®ts

to the experimental data for plasma density Ni0, electron

temperature Te0, ion temperature Ti0 [7]. We ®nd that

there is little change in the magnetic geometry in L and

H mode. The plasma density Ni0 is steepened by a factor

of 4 and the electron temperature is steepened by a

factor of 1.5 from L to H mode. Since there is no ion

temperature measurement for L mode we assume

Ti0 � Te0.

In Eqs. (1)±(6), there are many local instability drives

as discussed in Ref. [1]. Given the above plasma pa-

rameters, two separate dominant modes are found by

running BAL and BOUT. (1) In the absence of E � B
shearing, an ideal MHD type mode is found in H-mode

in the edge with low toroidal mode number n, extending

up to n� 60. This is a possible candidate for the co-

herent mode found in DIII-D in H-mode [8]. The e�ect

of shearing on the mode is under investigation. (2) A

broad-band high-n mode is found, peaked around

n� 220, both for L mode and H mode. The details of the

linear instability analysis and simulations will be given in

a future publication.

We have run a number of simulations using the

electrostatic version of BOUT under L-mode and H-

mode plasma conditions. The qualitative ballooning

mode structure is similar to Fig. 2(b) and (c) in Ref. [1].

The frequency spectra of the mid-plane particle ¯ux

from probe measurements and BOUT simulations in L

mode in Fig. 2 shows reasonable agreement; there is a

two-scale fall o� in the spectrum, 1=f scaling at low

frequency and 1=f 4 scaling at high frequency separated

around 200 MHz. The radial pro®les of the ensemble

averaged turbulence di�usion coe�cient vi�x� and tur-

bulence generated electric ®eld Ex�x� are shown in

Figs. 3 and 4. We ®nd (1) spatial pro®les of the turbu-

lence-generated di�usivity in qualitative agreement with

those required to yield pedestal plasma pro®les in plas-

ma boundary; (2) turbulence-generated electric ®eld

pro®les across the separatrix qualitatively consistent

with H-mode experiments. As is shown in Fig. 3, the

turbulence-generated di�usivity is larger in ¯at regions

(top of pedestal) and small in the steep gradient region

Fig. 2. Comparison of power spectra from Probe data and BOUT L-mode simulations. Shots 89840 at t� 2370 ms (BOUT) and shots

89835 and 89842 (probe).
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(pedestal edge). These are necessary conditions to form

the pedestal plasma pro®les. The non-monotonic radial

dependence of the turbulence-generated di�usivity is

under investigation. We have also run the case by

turning o� the electric ®eld, and ®nd that the SOL

transport is reduced due to ®nite polarization stabiliza-

tion of SOL modes [9].

5. Summary

We have investigated boundary plasma turbulence in

L and H mode using the BOUT turbulence code and the

BAL linearized shooting code. We have found broad-

band toroidal-mode-number turbulence peaked around

n� 220, dominated by the combination of bad curvature

and steep radial gradients. The BOUT simulations and

probe measurements show similar frequency spectra for

the mid-plane particle ¯ux. The reduction of particle ¯ux

from L to H mode is also consistent with the results in

experimental modeling [7].

These simulations show the feasibility of modeling

some aspects of L to H transition with the turbulence

code BOUT; the detailed dynamics of L to H transition

requires the evolution of background plasma pro®les.

Important additional work to be done is to include

sources and sinks in BOUT and to evolve the plasma

pro®le self-consistently or to dynamically couple the

BOUT to an edge transport code such as UEDGE.
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Fig. 4. Electric ®eld Ex�x� in H mode from BOUT simulations.

The solid line is the computed Ex�x� including the turbulence-

generated contribution, the dashed line is the equilibrium

electric ®eld calculated from the smoothed diamagnetic ¯ow

and the sheath potential in the SOL.

Fig. 3. Turbulence-generated heat di�usivity vi in L mode from

BOUT simulations. The solid line is the computed vi; the dotted

line is the equilibrium ion temperature pro®le Ti�x�, the dashed

line is the inverse-radial-gradient scale length qs=LP of total

pressure P normalized to the separatrix value, and the dot-da-

shed line is the inverse-radial-gradient scale length qs=LTi of ion

temperature normalized to the separatrix value.
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